The Multi-Scale 3D-1D Compatibility Scoring for Inverse Protein Folding Protein
نویسندگان
چکیده
The applicability of the Multi-Scale Structure Description (MSSD) scheme to the inverse-folding problems was investigated. An MSSD represents a 3D protein structure with multiple symbolic sequences, where fine structures are represented with the sequence at low levels, the middle scale structural motifs at middle levels, and global topology at high levels. Each symbol in the symbolic sequence denotes a type of local structure of the level scale. The structure fragments are classified at each scale level respectively according to the shape and the environment around the fragments: how the structure is exposed to the solvent or buried in the molecule. I modeled the propensity of an amino-acid sequence to the structure fragment type (i.e., primary constraint) at each scale level. The local propensity is, therefore, modeled at small scale (low) levels, while the global propensity modeled at large scale (high) levels. Thus, superposing all the primary constraint, a 3D protein structure yields an amino-acid sequence profile. Evaluating the fit of an amino acid sequence to the profile derived from the known 3D protein structure, we can identify which 3D structure the given amino-acid sequence would fold into. I checked whether a sequence identifies its own structure over two hundred protein sequences. In many cases, an amino acid sequence identified its own 3D protein structure.
منابع مشابه
Feasibility in the inverse protein folding protocol.
Methods for protein structure (3D)-sequence (1D) compatibility evaluation (threading) have been developed during the past decade. The protocol in which a sequence can recognize its compatible structure in the structural library (i.e., the fold recognition or the forward-folding search) is available for the structure prediction of new proteins. However, the reverse protocol, in which a structure...
متن کاملDe novo and inverse folding predictions of protein structure and dynamics
In the last two years, the use of simplified models has facilitated major progress in the globular protein folding problem, viz., the prediction of the three-dimensional (3D) structure of a globular protein from its amino acid sequence. A number of groups have addressed the inverse folding problem where one examines the compatibility of a given sequence with a given (and already determined) str...
متن کاملTopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions
Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH) method. ESPH represents 3D co...
متن کاملComputer Aided Molecular Modeling Of Membrane Metalloprotease
Molecular modeling is a set of computational techniques for construction of 3D structure of a protein especially membrane bound proteins whose structures can not be elucidated using experimental techniques. These techniques has been applied in the study of membrane metalloproteases for comparing wild and mutated enzymes, docking inhibitors in the catalytic site and examination of binding pocket...
متن کاملProtein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions
Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. International Conference on Intelligent Systems for Molecular Biology
دوره 2 شماره
صفحات -
تاریخ انتشار 1994